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Abstract 

Some progression formulae for uneven and 'asym- 
metric' sampling of the Brillouin zone are shown to 
be particularly useful to attain fast convergence in 
the calculation of atomic displacement parameters 
and thermodynamic functions by lattice-dynamical 
procedures. 

Introduction 

Lattice dynamics provides a useful way for deriving 
important crystal properties from structural and 
spectroscopic (or force-field) data. Among these 
properties, there are thermodynamic functions and 
also information about thermal behaviour (e.g. TDS, 
atomic displacement parameters or a.d.p.'s). 

For instance, the atomic displacement tensor U(p) 
relative to a certain atom p can be obtained as follows: 

U(p)=(Nmp) - l~ ,  Ez(q)[27ruq,(q)] -2 
~,q 

× e( p [ ~q)[e* ( p [ qJq)]'. (i) 

Here e(pl Oq) is the mass-adjusted polarization 
vector of the atom p, E,(q) is the average energy of 
the mode, N is the total number of unit cells in the 
crystal and mp is the mass of the atom (see, for 
instance, Willis & Pryor, 1975). 

Similarly, thermodynamic functions such as the 
molar heat co and entropy S can be derived from the 
same data: 

co = 3R ~., g,,(hv/kT) 2 exp (hv /kT)  

x [exp (h~,/kT) - 1]-2A ~, (2) 

S = Evib /T-  3 R Y. g~ In [ 1 - e x p  (hv/kT)]A~,, 
(3) 

where Evi b is the vibrational energy of the crystal and 
g~ is a density-of-states function, normalized so that 
Y~ ~ g ~ v  = 1. The summations are extended to all the 
vibrational modes (0) of frequency u, for a certain 
point of the Brillouin zone corresponding to a certain 
value of the wave vector q and (in principle) to all 
the values of q in the Brillouin zone. 

The necessity of sampling the Brillouin zone at a 
sufficient number of points is one of the major prac- 
tical difficulties. For some thermodynamic functions, 
considerable efforts have already been made to define 
an efficient way to obtain an accurate description of 
the density of states of a material from a limited 
sampling (see, for instance, Baldereschi, 1972; Chadi 
& Cohen, 1973; Price, Parker & Leslie, 1987). The 
situation becomes considerably more critical if 
a.d.p.'s or their molecular counterparts [such as T, L 
and S in Schomaker-Trueblood's (1968) notation] 
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are estimated. This happens because the contributions 
go to infinity at the origin [see (1)]; a similar problem 
occurs also for entropy, but the contributions go to 
infinity so slowly that for a small volume around q = 0 
they are negligible with respect to the rest of the 
Brillouin zone. 

For instance, Reid & Smith (1970) in one of the 
best theoretical estimations of the B's for some alkali 
halides have considered sampling up to over 8000 
symmetry-independent points in the Brillouin zone. 
A strategy of uneven sampling whose thickness is a 
maximum in proximity of the origin of the Brillouin 
zone (q = 0) was proposed by some of us (Filippini, 
Gramaccioli, Simonetta & Sutfritti, 1976) (FGSS). 
From the various possibilities, each of them corre- 
sponding to a different progression, the choice of the 
most appropriate sampling was made by examining 
convergence as a function of the number n of grid 
intervals AXk along the reciprocal crystal axes. For 
each interval, two criteria for defining the sampling 
point at the interior of it were used and discussed. 

By examining various cases of molecular crystals, 
the best progression along each reciprocal axis was 
found to correspond to the formula 

AXk= N [ k 2 / ( 3 +  k2)] 1/3, (4) 

where N is a normalization constant so that ~ AXk = 

1/2 (or or) in reciprocal axial units, according to our 
definition of q. The location of the sampling point 
within each interval was chosen so that the border 
line between two subsequent intervals was located at 
equal distance between the corresponding sampling 
points. Similar results could be obtained by using 
simpler progression formulae of the kind 

AXk = N k  ~ (5) 

where the optimum sequence corresponded to a value 
of r around 1.25. 

Another way of solving the same problem has been 
proposed by Kroon & Vos (1978, 1979) (KV). These 
authors use a more elaborate division of the reciprocal 
space into pyramids of three kinds around the origin; 
they show their own procedure to be satisfactory and 
definitely better with respect even to the best pro- 
gression series proposed by FGSS; for this reason the 
criterion of uneven sampling was rejected by them 
as impractical. 

Whereas some of the results shown by KV are in 
their turn open to discussion (for instance, they show 
a very good convergence for the values of L, but the 
critical contribution of the acoustic branches in the 
proximity of the origin imply the tensor T almost 
exclusively), on reading FGSS's paper again after 
some years we have noticed the presence of some 
statements which are not clear and this might have 
led to substantial misunderstanding. For instance, in 
defining the position of sampling points within each 

zone [see Fig. 1 in FGSS, case (a)], the authors 
omitted to define the position q~ of the first point.* 

In a new series of calculations concerning (this 
time) minerals and inorganic substances in general 
(Pilati, Bianchi & Gramaccioli, 1990), we wanted to 
extend these tests on sampling the Brillouin zone 
using various progression formulae and different 
criteria for choosing the sampling point within each 
interval. For this reason, a more detailed explanation 
of this procedure and extension of such techniques 
to further examples appeared to us as necessary and 
interesting. 

Results and discussion 

Our 'new' progression formulae establish an interval 
AXk in a certain direction of the reciprocal space 
(usually along a reciprocal axis) as in (5). Since the 
choice of the zone is always made so that the F point 
is in the centre (see FGSS, 1976), in many cases the 
asymmetric unit coincides with the region of all posi- 
tive coordinates, or (for lower symmetry) a similar 
construction for the negative regions can be added if 
necessary. Using this criterion, the boundaries of each 
interval Xk-~ and Xk (referred to reciprocal-space 
units) are given by 

Xk = Xk-l  + N k  r (Xo=0). (6) 

The position (the corresponding coordinate qk in 
the reciprocal-space reference) of the sampling point 
within each interval is given by the expression 

qk = Xk-~ + tAk (7) 

where 0 < t < 1. 
Several kinds of sequences differing for the values 

of r and t have been tested for two substances, NaCI 
and forsterite a-Mg2SiO4; for each sequence the num- 
ber of intervals was allowed to vary from 1 to a 
maximum value in order to test the speed of conver- 
gence. 

The lattice-dynamical calculations for NaC1 have 
been made by assuming Kellermann's (1940) rigid- 
ion model; no emphasis is made here to claim these 
results to be a particularly good estimation of the 
a.d.p.'s and other properties with respect to a series 
of recent applications of sophisticated models (see, 
for instance, Reid & Smith, 1970). Here the calcula- 
tions are performed on a simple model to show these 
convergence properties. For forsterite Mg2SiO4, our 
calculations using Iishi's (1978) RI3 rigid-ion model 
have been used as a basis for this test (Pilati, Bianchi 
& Gramaccioli, 1990). 

* In FGSS's calculations, the positions qk of the subsequent 
sampling points are given in their case (a) by the following 
expressions: 

qt = Ax~ - 0-75Ax 2 + 0.25Ax3; 

q2 = Axl + 0"75Ax2 - 0"25Ax3; 

qk =qk-2+2AXk-1 (k-3) .  
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Table 1. Estimated values of entropy (J mo1-1 K -1) at 298 K for various kinds of sampling 

The parameter n corresponds to the number of intervals along the asymmetric unit of  each reciprocal axis; r corresponds to the exponent 
in (5) and t determines the position of the sampling point within each interval, according to (7). 

Forsterite 

NaC1 

n r = 0 ,  t =0.500 r =  1, t=0 .375 r =  1, t =0.400 r =  l,  t =0.425 r =  1, t =0.450 

1 90.9 92.3 92.0 91-7 91.4 
2 91.3 91.7 91.6 91-5 91.3 
4 91.3 91.6 91-5 91.4 91.4 
8 91-3 91-5 91-4 91.4 91.4 

12 91.3 91-4 91.4 91.4 91.4 
16 91.3 91-4 91.4 91.4 91.3 

n r = 0 ,  t=0 .55  r =  1, t =0.450 r =  1, t =0.400 

1 17.6 18.0 17.9 
2 17.7 17.7 17.9 
4 17-7 17.7 17.8 
8 17.7 17.7 17.7 

16 17.7 17.7 17.7 
40 17.7 17.7 17-7 

Table 1 shows convergence to be easily attained 
for entropy with any kind of sampling. This confirms 
the results found previously by us and other authors 
(see, for instance, FGSS, 1976). Instead, convergence 
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Fig. 1. Change in the estimated Beq values (A 2) for the CI atom 
in NaCl as a function of the Brillouin-zone sampling. Each curve 
joins the corresponding points belonging to the same sequence, 
but differing in the number n of  sampling intervals along each 
reciprocal axis. The highest three curves correspond to t = 0.4, 
the curves in the middle to t =0.45 and the lowest three to 
t =0.5. In each bundle, the curves differ in the value of  r 
(0 to 2). 

is more critical for atomic displacement parameters: 
the situation is shown in Figs. 1 and 2 as a plot of 
the Beq'S for the cases of NaC1 and forsterite, respec- 
tively, against the number n of grid spacings. In these 
figures, several sequences are represented, depending 
on the kind of progression formula (as determined 
by the parameter r) and on the position of the 
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2 Fig. 2. Change of  Beq values ( ~ )  for various atoms in the forsterite 
structure as a function of the Brillouin-zone sampling. All the 
curves reported for each atom correspond to r = 1, with the 
exception of  the lowest one for which r = 0 (and t = 0.5). 
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sampling point within each interval (as determined 
by the parameter t). 

For simplicity, in Fig. 1 only the data relative to 
the Beq of C1 are reported, since the trend for the 
corresponding data of the Na atom is exactly the 
same. In the upper part of the figure, the curves 
relative to a common value for t = 0.4 appear grouped 
together; in the lower part the curves for which t = 0.5 
are also grouped together. The curves in the middle 
correspond to t = 0.45. The lowest curve (for n > 8) 
corresponds to r = 0 and t = 0.5, i.e. to an even samp- 
ling of the Brillouin zone, with the sampling point 
'symmetrically' located, i.e. lying at the centre of each 
reciprocal-lattice interval. 

At a first glance the curves in Fig. 1 show the 
situation of even sampling to be unfavourable with 
respect to the others; another important point is that 
the parameter r is relatively much less effective than 
the parameter t. Therefore, more than the difference 
in sampling intervals, what counts is the position of 
the representative point within each interval. Here, a 
value around 0.45 seems to be the most convenient; 
our calculations have also been performed in this 
case with different values of r, but no practical 
difference between these results occurs for n->8 
(there is a virtual overlap of the corresponding curves 
in most of the diagram). 

For NaC1, with values of t different from the 
optimum, the convergence to the final value is very 
slow. However, even for the most unfavourable situ- 
ation, the difference between the final value (n ~ oo) 
and a reasonably limited number of intervals along 
each axis (n = 4) is of the order of 7%, i.e. the devi- 
ation is substantially smaller than the corresponding 
accuracy of the best crystallographic experimental 
data. For t = 0.45, i.e. with the most favourable situ- 
ation, the difference between n = 4 and the final value 
is less than 1%. A similar conclusion can be reached 
by looking at Figs. 3(a) and 4 of Reid & Smith (1970), 
who plot the percentage contribution of the zero- 
phonon term to the Beq'S in NaCI. 

For forsterite, owing to the greater complexity of 
the structure, the number of sequences tested here is 
restricted to r = 1, together with the 'even-symmetric' 
sampling of r = 0 and t = 0.5, which corresponds in 
each case to the lowest curve in Fig. 2. In this figure, 
the trend is shown separately for each different atom, 
with the exception of the atoms 0(2) and O(3), whose 
values are practically identical to O(1). Although the 
actual values of the Beq'S are considerably different, 
the curves relative to the different atoms in Fig. 2 
might be virtually superimposed on each other if 
vertically shifted, and therefore the trend towards 
convergence is identical. The best results occur for 
values of t lying between 0.375 and 0.400: therefore, 
the optimum situation is appreciably different from 
the case of NaC1. However, even for the worst choice 
of the sampling procedure, here too the difference 

between the convergence values and the case of n = 4 
is well below the accuracy of the best crystallographic 
experimental data, since it never exceeds 4%, and it 
is about 1% for the most favourable sampling. Even 
for n = 2 the results are quite reasonable, since for 
the best sampling they agree with the final value 
within 2%, and this might suggest the possibility of 
a considerable saving of computing time. 

In conclusion, the a priori choice of the best samp- 
ling procedure for improving convergence seems to 
be more difficult than it was before: in fact our 
experience concerning molecular crystals has shown 
that the same series could be safely used for a variety 
of different substances. However, the trend of the 
function to be integrated (by summation) is linked 
to the slope of the acoustic branches of the phonon 
dispersion curves in the proximity of the origin (see 
above). Since the slope depends on the elastic con- 
stants and the density of the substances (see, for 
instance, Kittel, 1966), and since these properties may 
vary sensibly for chemically different groups of sub- 
stances, we may expect that the best performance 
would be obtained by using the parameters which 
showed the best behaviour for other chemically 
similar substances. On the other hand, whenever we 
are beginning to consider a group of substances which 
have not been tested before in this respect, some 
caution is necessary against a priori use of the samp- 
ling for best convergence. In any case, however, when 
lattice-dynamical calculations are performed on a 
certain substance, they are usually repeated for a 
variety of different conditions (e.g. for different values 
of temperature and other parameters affecting the 
calculations). In this case, a detailed choice of the 
best sampling is convenient, since the optimum condi- 
tions of convergence can be maintained throughout 
the work. 

In the cases shown above, however, the problem 
of the choice of a convenient Brillouin-zone sampling 
does not seem to be very important for most applica- 
tions concerning comparison with experimental data 
since the errors deriving from an inadequate sampling 
are usually inferior to the corresponding experimental 
uncertainties. This complex problem can become deli- 
cate only for some very particular cases, such as, for 
instance, when accurate evaluation of the a.d.p.'s is 
considered: a possible future need for such data might 
occur when a particularly accurate evaluation of elec- 
tron density in crystals is considered. 

All calculations were performed using our program 
FREMIN running on a Gould NP1 computer. 
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Abstract 

Lattice frequencies and crystallographic thermal 
parameters are calculated for some azahydrocarbons 
with the external Born-von Karman formalism using 
an atom-atom potential model which accounts 
explicitly for electrostatic interactions modelled 
as atomic point charges. Results are satisfactory, 
encouraging the application of this procedure to a 
wider range of molecular crystals. Comparison of 
calculated thermal parameters with experimental data 
obtained with different techniques increases the need 
for reliable experimental thermal parameters in order 
to make meaningful deductions. 

Introduction 

Lattice dynamics of molecular crystals based on semi- 
empirical models for atomic forces has been a field 
of growing interest stemming from the basic work 
(Cochran & Pawley, 1964) where the complete lattice 
dynamics of a molecular crystal was studied for the 
first time, followed by a series of papers (Pawley, 
1967, 1972) which established the practical formula- 
tion for these calculations. The development of 
optical spectroscopy probing the far-infrared lattice 
region and the advent of neutron spectroscopy have 
also increased the activity in this field. 

Lattice dynamics also finds a very important appli- 
cation as an aid to crystallographic studies (see Willis 
& Pryor 1975). For instance, an adequate lattice- 
dynamical model can help to correct experimental 
Bragg intensities for thermal-diffuse-scattering (TDS) 
contributions. Another interesting application is the 
calculation of crystallographic thermal parameters 
using potential-energy models for comparison with 
the experimental values obtained in a least-squares 
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structure refinement process. This procedure can 
reveal possible bias in the experimental thermal par- 
ameters as a consequence of systematic errors; some 
information on the different contributions of crystal 
forces to thermal motion can also be obtained. 

These calculations have been successful especi- 
ally in connection with hydrocarbons. Here atom- 
atom potential models in the form V(r )=-A/ r6+ 
B exp ( - C r )  seem to work particularly well for both 
rigid and non-rigid molecules (Filippini, Gramac- 
cioli, Simonetta & Suffritti, 1973, 1974). In the latter 
case, the contribution of internal modes tends to 
increase the thermal parameters; a further increase 
is observed if coupling between internal and external 
modes is taken into account (Gramaccioli, Filippini 
& Simonetta, 1982; Gramaccioli & Filippini, 1983). 
Other studies which successfully calculate thermal 
parameters from lattice dynamics for hydrocarbons 
are: o-terphenyl (Gramaccioli & Filippini, 1985), 
tetraphenylmethane (Filippini & Gramaccioli, 1986), 
biphenyl (Bonadeo & Burgos, 1982) and benzene 
(Filippini & Gramaccioli, 1989). There are also some 
applications to heteroatomic crystals (Filippini, 
Gramaccioli, Simonetta & Suffritti, 1976; Filippini, 
Gramaccioli & Simonetta, 1981). 

The remarkable success of calculations of thermal 
motion for hydrocarbons resides in the fact that the 
crystal force field can be modelled adequately using 
6-exp potential functions. Nevertheless, if we try to 
extend the method to other kinds of molecular crystals 
where atoms very different in electronegativity are 
bound together, electrostatic forces arising from 
molecular static-multipole moments appear which 
must be accounted for. If these forces are small they 
can be absorbed into effective 6-exp models (although 
these turn out to be non-transferable to other 
molecules) but if the electrostatic interactions are 
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